

FEATURESOPERATIONNotice:

- Each size suit for plate type & round type steel using.
- All new models with " light weight" less dimension" and " lower price".
- Made by permanent magnet, require no power supply, thus eliminating hazards due to failure wiring system as electric type.
- It features powerful magnetic force, with 3.5 times safety coefficient makes more safety in use.

OPERATION

With ON/OFF switch, it is very easy and convenient to operate.

See as the example pictures as below

Notice:

Never moves the handle to "ON" side, except on an iron object of holding.

OFF

 Never operate over human's head.

DIMENSIONS

ORDER NO.	Capacity	А	В	с	D	Е	F	G	н	Weight	SAFETY	CODENO
	kg Ibs	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	kg Ibs	COEFFICIENT	CODE NO.
VML-100	100 220	107 4.2	84 3.3	120 4.7	125 4.9	60 2.4	71 2.8	41 1.6	30 1.2	2.7 5.5		2018-060
VML-300	300 660	180 7.1	155 6.1	156 6.1	185 7.3	90 3.6	93 3.7	51 2.0	41 1.6	9.1 18.9		2018-061
VML-600	600 1320	255 10	224 8.8	212 8.3	260 10.2	115 4.5	120 4.7	77 3.0	52 2.0	21.5 46	x3.5 times	2018-062
VML-1000	1000 2200	280 11	245 9.6	286 11.3	371 14.6	165 6.5	169 6.7	97 3.8	87 3.4	53.4 101		2018-063
VML-2000	2000 4400	422 16.6	380 15	348 13.7	512 20.2	216 8.5	215 8.5	105 4.1	121 4.8	127.8 259		2018-064

Permanent Magnetic Lifter Convertex®

APPLICATIONS

Suitable for move plate steel, block steel and round steel, such as machine parts, press molds, plastic molds and iron materialetc.

MAGNETIC LIFTER

LOAD OF HOLDING POWER

• The load of holding power will changes depending on the thickness, attractive face roughness and quality of material and clearance between the workpiece with magnet.

	Thi	ckness		Perce	entage of	lifting cap	Table of difference in holding Table of difference in holding							
	mm	inch	VML-3000	VML-2000	VML-1000	VML-600	VML-300	VML-100	power by attractive face power by material quality					
T1	up 60	up 2.36"	100%	100%			100%	100%	roughness For all models For all models					
T2	55	2.16"	95%	100%					0 50% 100% 125% 0 50% 100					
Т3	50	1.97″	90%	95%	100%									
T4	45	1.77"	85%	90%		100%			125% Will Low carbon 100%					
T5	40	1.57"	80%	85%					F2 ∇∇ 100% M2 Moderate carbon 85%					
T6	35	1.38"	70%	75%	90%			100%						
T7	30	1.18″	60%	65%	80%				$F3 \lor 90\%$ M3 High carbon 75%					
T8	25	0.98"	50%	55%	70%	90%			F4 ~ 65% M4 Cast iron 70%					
Т9	20	0.79″	40%	45%	60%	75%	90%]						
T10	15	0.59"	30%	35%	50%	60%	70%		Calculating Formula for					
T11	10	0.39″	20%	25%	35%	45%	50%	70%	"Range of Lifting Capacity" → (TxFxMxCapacity of Lifter) Example:					
T12	5	0.20"	10%	15%	20%	25%	30%	40%						

Terms of workpiece: T8, F1 and M2 90% x 125% x 85% x 600kgs (VML-600)=573kgs

SAFETY COEFFICIENT x 3.5 times

The capacity of magnet indicated as 1/3.5 of holding power, it means the real holding power is 3.3 times of capacity. For example the capacity of VML-600 is 600kgs (1320lbs) but the real holding power is 1980kgs (4350lbs).

The large safety coefficient is consideration for ensuring the use in safety.

MAXIMUM LIFTING RANGE

FORM OF MATERIAL	STEE		F			
	Max.lifting capacity	Min.thickness required	Max.lifting capacity	Min Dia	Max.diameter	Maximum length
ORDER NO.	kg Ibs	mm inch	kg Ibs	mm	mm inch	mm inch
VML-100	100 220	15 0.59″	58 125	80	150 5.9″	1000 40″
VML-300	300 660	25 0.98″	175 380	100	250 9.8″	1500 60″
VML-600	600 1320	30 1.18″	345 760	180	350 13.8″	2000 80″
VML-1000	1000 2200	40 1.57″	570 1255	230	450 17.8″	2500 98″
VML-2000	2000 4400	55 2.16″	1140 2510	260	550 21.6″	3000 118″
VML-3TH	3000 6600	60 2.36″	1710 3675	300	650 25.6″	3500 138″